Headlines > News > First 360-Degree Panorama From NASA's Curiosity Mars Rover

First 360-Degree Panorama From NASA's Curiosity Mars Rover

Published by Klaus Schmidt on Thu Aug 9, 2012 6:29 am via: NASA
Share
More share options
Tools
Tags

PASADENA, Calif. — Remarkable image sets from NASA’s Curiosity rover and Mars Reconnaissance Orbiter are continuing to develop the story of Curiosity’s landing and first days on Mars.

The images from Curiosity’s just-activated navigation cameras, or Navcams, include the rover’s first self-portrait, looking down at its deck from above. Another Navcam image set, in lower-resolution thumbnails, is the first 360-degree view of Curiosity’s new home in Gale Crater. Also downlinked were two, higher-resolution Navcams providing the most detailed depiction to date of the surface adjacent to the rover.

This color full-resolution image showing the heat shield of NASA's Curiosity rover was obtained during descent to the surface of Mars on Aug. 5 PDT (Aug. 6 EDT). Image credit: NASA/JPL-Caltech/MSSS

This color full-resolution image showing the heat shield of NASA's Curiosity rover was obtained during descent to the surface of Mars on Aug. 5 PDT (Aug. 6 EDT). Image credit: NASA/JPL-Caltech/MSSS

“These Navcam images indicate that our powered descent stage did more than give us a great ride, it gave our science team an amazing freebie,” said John Grotzinger, project scientist for the mission from the California Institute of Technology in Pasadena. “The thrust from the rockets actually dug a one-and-a-half-foot-long [0.5-meter] trench in the surface. It appears we can see Martian bedrock on the bottom. Its depth below the surface is valuable data we can use going forward.”

This is the first image taken by the Navigation cameras on NASA's Curiosity rover. Image credit: NASA/JPL-Caltech

This is the first image taken by the Navigation cameras on NASA's Curiosity rover. Image credit: NASA/JPL-Caltech

Another image set, courtesy of the Context Camera, or CTX, aboard NASA’s Mars Reconnaissance Orbiter has pinpointed the final resting spots of the six, 55-pound (25-kilogram) entry ballast masses. The tungsten masses impacted the Martian surface at a high speed of about 7.5 miles (12 kilometers) from Curiosity’s landing location.

This imagery is being released in association with NASA's Mars Science Laboratory mission. Image credit: NASA/JPL-Caltech

This imagery is being released in association with NASA's Mars Science Laboratory mission. Image credit: NASA/JPL-Caltech

Wednesday, the team deployed the 3.6 foot-tall (1.1-meter) camera mast, activated and gathered surface radiation data from the rover’s Radiation Assessment Detector and concluded testing of the rover’s high-gain antenna.

Curiosity carries 10 science instruments with a total mass 15 times as large as the science payloads on NASA’s Mars rovers Spirit and Opportunity. Some of the tools, such as a laser-firing instrument for checking rocks’ elemental composition from a distance, are the first of their kind on Mars. Curiosity will use a drill and scoop, which are located at the end of its robotic arm, to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into the rover’s analytical laboratory instruments.

Rocket Thrusters Expose Bedrock  This is a close-up view of a zone where the soil at Curiosity's landing site was blown away by the thrusters on the rover's descent stage. The excavation of the soil reveals probable bedrock outcrop. This is important because it shows the shallow depth of the soil in this area. The area surrounding the zones of excavation shows abundant small rocks that may form a pavement-like layer above harder bedrock.

Rocket Thrusters Expose Bedrock This is a close-up view of a zone where the soil at Curiosity's landing site was blown away by the thrusters on the rover's descent stage. The excavation of the soil reveals probable bedrock outcrop. This is important because it shows the shallow depth of the soil in this area. The area surrounding the zones of excavation shows abundant small rocks that may form a pavement-like layer above harder bedrock.

To handle this science toolkit, Curiosity is twice as long and five times as heavy as Spirit or Opportunity. The Gale Crater landing site places the rover within driving distance of layers of the crater’s interior mountain. Observations from orbit have identified clay and sulfate minerals in the lower layers, indicating a wet history.

These are the first two full-resolution images of the Martian surface from the Navigation cameras on NASA's Curiosity rover, which are located on the rover's "head" or mast. The rim of Gale Crater can be seen in the distance beyond the pebbly ground.

These are the first two full-resolution images of the Martian surface from the Navigation cameras on NASA's Curiosity rover, which are located on the rover's "head" or mast. The rim of Gale Crater can be seen in the distance beyond the pebbly ground.

The Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) camera is operated by the University of Arizona in Tucson. The instrument was built by Ball Aerospace & Technologies Corp. in Boulder, Colo. The Mars Reconnaissance Orbiter and Mars Exploration Rover projects are managed by JPL for NASA’s Science Mission Directorate, Washington. The rover was designed, developed and assembled at JPL. JPL is a division of the California Institute of Technology in Pasadena. Lockheed Martin Space Systems in Denver built the orbiter.

No comments
Start the ball rolling by posting a comment on this article!
Leave a reply
You must be logged in to post a comment.
© 2014 The International Space Fellowship, developed by Gabitasoft Interactive. All Rights Reserved.  Privacy Policy | Terms of Use