Headlines > News > Herschel finds less dark matter but more stars

Herschel finds less dark matter but more stars

Published by Klaus Schmidt on Thu Feb 17, 2011 7:54 am via: ESA
More share options

ESA’s Herschel space observatory has discovered a population of dust-enshrouded galaxies that do not need as much dark matter as previously thought to collect gas and burst into star formation.

The galaxies are far away and each boasts some 300 billion times the mass of the Sun. The size challenges current theory that predicts a galaxy has to be more than ten times larger, 5000 billion solar masses, to be able form large numbers of stars.

The calculated distribution of dark matter

The calculated distribution of dark matter

The new result is published today in a paper by Alexandre Amblard, University of California, Irvine, and colleagues.

Most of the mass of any galaxy is expected to be dark matter, a hypothetical substance that has yet to be detected but which astronomers believe must exist to provide sufficient gravity to prevent galaxies ripping themselves apart as they rotate.

Current models of the birth of galaxies start with the accumulation of large amounts of dark matter. Its gravitational attraction drags in ordinary atoms. If enough atoms accumulate, a ‘starburst’ is ignited, in which stars form at rates 100–1000 times faster than in our own galaxy does today.

Herschel's target: the so-called Lockman Hole

Herschel's target: the so-called Lockman Hole

“Herschel is showing us that we don’t need quite so much dark matter as we thought to trigger a starburst,” says Asantha Cooray, University of California, Irvine, a co-author on today’s paper.

This discovery was made by analysing infrared images taken by Herschel’s SPIRE (Spectral and Photometric Imaging Receiver) instrument at wavelengths of 250, 350, and 500 microns. These are roughly 1000 times longer than the wavelengths visible to the human eye and reveal galaxies that are deeply enshrouded in dust.

The calculated distribution of dark matter

The calculated distribution of dark matter

“With its very high sensitivity to the far-infrared light emitted by these young, enshrouded starburst galaxies, Herschel allows us to peer deep into the Universe and to understand how galaxies form and evolve,” says Göran Pilbratt, the ESA Herschel project scientist.

There are so many galaxies in Herschel’s images that they overlap, creating a fog of infrared radiation known as the cosmic infrared background. The galaxies are not distributed randomly but follow the underlying pattern of dark matter in the Universe, and so the fog has a distinctive pattern of light and dark patches.

Analysis of the brightness of the patches in the SPIRE images has shown that the star-formation rate in the distant infrared galaxies is 3–5 times higher than previously inferred from visible-wavelength observations of similar, very young galaxies by the Hubble Space Telescope and other telescopes.

Further analysis and simulations have shown that this smaller mass for the galaxies is a sweet spot for star formation. Less massive galaxies find it hard to form more than a first generation of stars before fizzling out. At the other end of the scale, more massive galaxies struggle because their gas cools rather slowly, preventing it from collapsing down to the high densities needed to ignite star formation.

But at this newly identified ‘just-right’ mass of a few hundred billion solar masses, galaxies can make stars at prodigious rates and thus grow rapidly.

“This is the first direct observation of the preferred mass scale for igniting a starburst,” says Dr Cooray.

Models of galaxy formation can now be adjusted to reflect these new results, and astronomers can take a step closer to understanding how galaxies – including our own –came into being.


In the continuum of space and time, exists the dichotomy of matter and energy. All things exist as both matter and energy, but are experienced as one or the other.
As energy, all things exist as wave patterns. Most wave patterns are interferences of simpler wave patterns. The simplest wave forms are those that do not interfere with other waves. These simplest wave forms hold their shape as they propagate. There are three such wave forms.
The first such wave form is seen in three dimensions as the spherical expansion wave of a bomb blast, and in two dimensions as the circular wave of expansion on the water where a rock was tossed in. The second wave form is seen in three dimensions as the cone of sonic boom following an aircraft traveling faster than sound, and in two dimensions as the V-wake on the water where the boat is traveling faster than the water wave. The third wave form is seen in three dimensions as the propagation torus of a smoke ring and is seen in two dimensions as the double vortexes of an oar stroke on the water.
The Torus is a particle of discrete exchange, from one point to another. The object exchanges position and momentum. While the spherical wave shows position, and the conic wave shows momentum, the torus shows both at the same time, and has a dynamic finite unbounded reality. The volumes of the cone, sphere, and torus are mathematically related as static objects.
The Universe is a local density fluctuation. (a wave pulse) On this local density fluctuation wave, lesser wave forms may exist. All simple wave forms are also local density fluctuations, and as such are indeed universes in their own right, where other waves may exist.
Consider the torus as a universe. Einstein said that gravity is indistinguishable from acceleration. There is both linear acceleration and angular acceleration. Although the torus as a whole travels in a straight line, every local point on the torus travels in a circle and experiences angular acceleration.
The rubber sheet model of gravity and curved space translates directly to the propagating torus with angular acceleration. Acceleration is downward on the rubber sheet and outward on the torus. The tension field that separates the inside of the torus from the outside holds its shape as a simple two dimensional field of space and time just as the rubber sheet does.
Experimentally verifiable is that a big fat slow smoke ring generated in a room with very still air will eventually possess a bulge that travels in a circle on the surface of the smoke ring. This bulge, being a gravitational depression, gathers more of the energy of the field toward itself. Finally the bulge gathers enough material to collapse the field and eject a new, smaller smoke ring out in the same direction as the first torus. This collapse is a black hole to the first torus, and a white hole to the second torus, where the axes of space and time in that second torus have reversed.
While gravity tends to draw depressions together locally on a dynamic torus, even to the point of field collapse, other areas on a torus expand and contract globally as the torus propagates along without regard to local phenomenon on the surface. This is quintessence. The inertia of the torus to propagate is its dark energy. This is a two-dimensional example of the process that we experience in three dimensions.

From structureofexistence.com by Dan Echegoyen 951-204-0201

Dan Echegoyen
author of StructureOfExistence.com
(951) 204-0201
Leave a reply
You must be logged in to post a comment.
© 2014 The International Space Fellowship, developed by Gabitasoft Interactive. All Rights Reserved.  Privacy Policy | Terms of Use