Headlines > News > XCOR Aerospace and ULA Announce Successful Hydrogen Piston Pump Tests

XCOR Aerospace and ULA Announce Successful Hydrogen Piston Pump Tests

Published by Klaus Schmidt on Wed Jun 9, 2010 5:49 am via: XCOR
Share
More share options
Tools
Tags

Mojave, CA, USA and Littleton, CO, USA:   XCOR Aerospace, the developer of the Lynx, a manned suborbital spacecraft and related technologies, and United Launch Alliance (ULA), the primary launch services provider to the US Government, announced the first successful demonstration of XCOR’s long life, high performance piston pump technology with liquid hydrogen.

XCOR has been developing piston pumps for space applications for more than eight years as an alternative to turbopumps, demonstrating longer life and lower cost.  XCOR’s piston pumps have other advantages including the ability to operate over a wide range of speeds and inlet conditions.  

XCOR's Mark Street makes an adjustment to a fitting on the pump apparatus prior to an LH2 test.

XCOR's Mark Street makes an adjustment to a fitting on the pump apparatus prior to an LH2 test.

After XCOR performed risk reduction and demonstration projects in 2009 that validated high performance cryogenic (liquid oxygen and liquid nitrogen) piston pump operations, ULA asked XCOR if the pump technology could be extended to liquid hydrogen.  Implementing rapid prototyping techniques and working on a fixed price basis, XCOR developed a single piston work-horse test article and test bench, and then successfully tested the pump with hydrogen in less than four months.  Based on this success, ULA and XCOR have begun the next phase of the project to further mature the technology.

During the tests, the XCOR team of Chief Engineer Dan DeLong, Chief Test Engineer Doug Jones, Senior Engineer Mike Valant and Systems Engineer Mark Street, demonstrated successive rounds of pumping liquid hydrogen at conditions relevant to a flight type multi-cylinder pump.   Possible applications include pump-fed liquid hydrogen rocket engines for upper stages, on-orbit propellant transfer operations, and other cryogenic fluid management applications.  A unique capability demonstrated during the tests was the ability to pump through cavitation events when liquid hydrogen returned to partial gaseous form, a sign of robustness of the design to handle anomalous events that would cause other high performance pump schemes to cease operations.

The XCOR Liquid Hydrogen Pump Apparatus.

The XCOR Liquid Hydrogen Pump Apparatus.

ULA’s Vice President of Business Development and Advanced Programs, Dr. George Sowers noted, “XCOR has demonstrated the beginnings of an important technology development path that has the promise to significantly improve the competitiveness of future ULA launch vehicles.”

Frank Zegler, Senior Staff Engineer in ULA’s Advanced Programs group, commented, “XCOR is doing things with piston pumps that no one else has done.”

“ULA has taken a very innovative and commercially focused approach for future technology insertion into their long range product planning roadmap, and XCOR is very pleased to support the ULA team by further enhancing and extending our technology to their unique needs for lower cost launch vehicles, new on-orbit applications and capabilities, and future deep space exploration systems,” said XCOR President and Founder Jeff Greason.

XCOR Chief Operating Officer Andrew Nelson said, “ULA’s use of our high performance, light weight cryogenic piston pump technology is very exciting and this effort is a demonstration of how a large and established aerospace company can effectively work with smaller, innovative New Space companies to improve the prime contractor’s product lines while simultaneously helping to restore the second and third tier aerospace supplier base our country has lost over the last twenty years. We are very pleased and fortunate to have such a good long term partner in ULA.”

No comments
Start the ball rolling by posting a comment on this article!
Leave a reply
You must be logged in to post a comment.
© 2014 The International Space Fellowship, developed by Gabitasoft Interactive. All Rights Reserved.  Privacy Policy | Terms of Use