Headlines > News > Europe scores new planetary success: Venus Express enters orbit around the Hothouse Planet

Europe scores new planetary success: Venus Express enters orbit around the Hothouse Planet

Published by Sigurd De Keyser on Tue Apr 11, 2006 6:05 pm
Share
More share options
Tools

Artist's impression of the Venus Express orbit insertion on 11 April 2006. In this phase of the mission, the most challenging since launch, the spacecraft's main engine burns for about 50 minutes, to reduce its speed with respect to Venus to allow the the spacecraft to be captured by the planet's gravitation. This morning, at the end of a 153-day and 400-million km cruise into the inner Solar System beginning with its launch on 9 November 2005, ESA’s Venus Express space probe fired its main engine at 09:17 CEST for a 50-minute burn, which brought it into orbit around Venus.

With this firing, the probe reduced its relative velocity toward the planet from 29,000 to about 25,000 km/h and was captured by its gravity field. This orbit insertion manoeuvre was a complete success.
During the next four weeks, the Venus Express probe will perform a series of manoeuvres to reach the scheduled operational orbit for its scientific mission. It will move from its current highly elongated 9-day orbit to a 24-hour polar orbit, culminating at 66,000 kilometres. From this vantage point, the orbiter will conduct an in-depth observation of the structure, chemistry and dynamics of the atmosphere of Venus for at least two Venusian days (486 Earth days).

The Venus Express mission mainly focusses on studying the peculiar atmosphere of Venus, with a precision never achieved before. In doing so, it will make the first ever use of the so called 'infrared windows', which are narrow bands in the atmospheric spectrum, discovered in the 1980s thanks to ground observations. Looking through these 'windows' Venus Express will be able to gather precious information about the lower layers of the atmosphere and even the surface. Enigmatic atmosphere

From previous missions to Venus as well as observations directly from Earth, we already know that our neighbouring planet is shrouded in a thick atmosphere where extremes of temperature and pressure conditions are common. This atmosphere creates a greenhouse effect of tremendous proportions as it spins around the planet in four days in an unexplained ’super-rotation’ phenomenon.

The mission of Venus Express will be to carry out a detailed characterisation of this atmosphere, using state-of-the-art sensors in order to answer the questions and solve the mysteries left behind by the first wave of explorers. It will also be the first Venus orbiter to conduct optical observations of the surface through ‘visibility windows’ discovered in the infrared spectrum.

The commissioning of the onboard scientific instruments will begin shortly and the first raw data are expected within days. The overall science payload is planned to be fully operational within two months.

With this latest success, ESA is adding another celestial body to its range of Solar System studies. ESA also operates Mars Express around Mars, SMART-1 around the Moon and is NASA’s partner on the Cassini orbiter around Saturn. In addition, ESA is also operating the Rosetta probe en route to comet 67P/Churyumov-Gerasimenko. It should reach its target and become the first spacecraft ever to enter orbit around a comet nucleus by 2014. Meanwhile, ESA also plans to complete the survey of our celestial neighbours with the launch of the BepiColombo mission to Mercury in 2013.

“With the arrival of Venus Express, ESA is the only space agency to have science operations under way around four planets: Venus, the Moon, Mars and Saturn” underlines Professor David Southwood, the Director of ESA’s science programmes. “We are really proud to deliver such a capability to the international science community.”

“To better understand our own planet, we need to explore other worlds in particular those with an atmosphere,” said Jean-Jacques Dordain, ESA Director General. “We’ve been on Titan and we already are around Mars. By observing Venus and its complex atmospheric system, we will be able to better understand the mechanisms that steers the evolution of a large planetary atmosphere and the change of climates. In the end, it will help us to get better models of what is actually going on in our own atmosphere, for the benefit of all Earth citizens.”

This image is an artistic interpretation of a possible volcano on Venus. In fact, from previous missions to the planet, Venus appears to be among the most geologically active planets in the solar system. Venus Express is able to detect gaseous markers in the lower layers of the atmosphere and variations in its temperature, possible signs of volcanic activity. Local variations in atmospheric temperature and pressure may also indicate the presence of seismic activity. State-of-the-art science package

Venus Express was developed for ESA by a European industrial team led by EADS Astrium incorporating 25 main contractors from 14 European countries. Its design is derived from that of its highly successful predecessor, Mars Express, and its payload accommodates seven instruments including upgraded versions of three instruments developed for Mars Express and two for Rosetta.

The PFS spectrometer will determine the temperature and composition profile of the atmosphere at very high resolution. It will also monitor the surface temperature and search for hot spots from possible volcanic activity. The UV/infrared SpicaV/SOIR spectrometer and the VeRa radioscience experiment will probe the atmosphere by observing the occultation of distant starts or the fading of radio signals on the planetary limb. SpicaV/SOIR will be particularly looking for traces of water molecules, molecular oxygen and sulphur compounds, which are suspected to exist in the atmosphere of Venus. The Virtis spectrometer will map the different layers of the atmosphere and provide imagery of the cloud systems at multiple wavelengths to characterise the atmospheric dynamics.

Venus is a planet with no intrinsic magnetic field and so, differently from Earth, it has no shield to protect it from the continuous attack of the capricious and violent solar wind. ESA's Venus Express will study how much of the atmosphere of the planet escaped under the bombardment of the solar wind and how much it combined with the surface material. On the outer edge of the atmosphere, the Aspera instrument and a magnetometer will investigate the interaction with the solar wind and plasma it generates in an open environment without the protection of a magnetosphere like the one we have around Earth.

The VMC wide-angle multi-channel camera will provide imagery in four wavelengths, including one of the ‘infrared windows’ which will make imaging of the surface possible through the cloud layer. It will provide global images and will assist in the identification of phenomena detected by the other instruments.

No comments
Start the ball rolling by posting a comment on this article!
Leave a reply
You must be logged in to post a comment.
© 2014 The International Space Fellowship, developed by Gabitasoft Interactive. All Rights Reserved.  Privacy Policy | Terms of Use