Headlines > News > VERITAS Telescopes Help Solve 100-Year-Old Mystery: The Origin of Cosmic Rays

VERITAS Telescopes Help Solve 100-Year-Old Mystery: The Origin of Cosmic Rays

Published by Klaus Schmidt on Mon Nov 2, 2009 5:39 pm via: source
Share
More share options
Tools
Tags

Cambridge, MA, – Nearly 100 years ago, scientists detected the first signs of cosmic rays – subatomic particles (mostly protons) that zip through space at nearly the speed of light. The most energetic cosmic rays hit with the punch of a 98-mph fastball, even though they are smaller than an atom.

Astronomers questioned what natural force could accelerate particles to such a speed. New evidence from the VERITAS telescope array shows that cosmic rays likely are powered by exploding stars and stellar “winds.”

These findings were published in the Nov. 1 online issue of the journal Nature, and are being featured today in a press conference at the Fermi Science Symposium in Washington, DC.

This image is a composite of multi-wavelength images of the active galaxy M82 from the three Great Observatories: Hubble Space Telescope, Chandra X-Ray Observatory, and Spitzer Space Telescope. X-ray data recorded by Chandra (courtesy of NASA/CXC/JHU/D.Strickland) appears here in blue; infrared light recorded by Spitzer (courtesy of NASA/JPL-Caltech/C. Engelbracht (University of Arizona)) appears in red; Hubble's observations (courtesy of NASA, ESA, and The Hubble Heritage Team (STScI/AURA)) of hydrogen emission appears in orange, and the bluest visible light appears in yellow-green. Credit: NASA, ESA, CXC, and JPL-Caltech

This image is a composite of multi-wavelength images of the active galaxy M82 from the three Great Observatories: Hubble Space Telescope, Chandra X-Ray Observatory, and Spitzer Space Telescope. Credit: NASA, ESA, CXC, and JPL-Caltech

Seeking the source of cosmic rays

The rarest cosmic rays carry over 100 billion times as much energy as generated by any particle accelerator on Earth. (”Cosmic ray” is a historical misnomer, since they are individual particles, not a ray or beam.) Astronomers have devised ingenious methods for detecting cosmic rays that hit Earth’s atmosphere. However, detecting cosmic rays from a distance requires much more effort.
VERITAS has found new evidence for cosmic rays in the “Cigar Galaxy,” also known as Messier 82 (M82), which is located 12 million light-years from Earth in the direction of the constellation Ursa Major.

“This discovery has been predicted for almost 20 years, but until now no instrument was sensitive enough to see it,” said Wystan Benbow, an astrophysicist at the Smithsonian Astrophysical Observatory. Benbow coordinated this project for the Very Energetic Radiation Imaging Telescope Array System (VERITAS) collaboration.

The VERITAS observations strongly support the long-held theory that supernovae and stellar winds from massive stars are the dominant accelerators of cosmic-ray particles. Galaxies with high levels of star formation like M82, also known as “starburst” galaxies, have large numbers of supernovae and massive stars. If the theory holds, then starburst galaxies should contain more cosmic rays than normal galaxies. The VERITAS discovery confirms that expectation, indicating that the cosmic-ray density in M82 is approximately 500 times the average density in our Galaxy, the Milky Way.

“This discovery provides fundamental insight into the origin of cosmic rays,” said Rene Ong, a professor of physics at the University of California, Los Angeles, and the spokesperson for the VERITAS collaboration.

Using gamma rays to infer cosmic rays

VERITAS could not detect M82’s cosmic rays directly because they are trapped within the Cigar Galaxy. Instead, VERITAS looked for clues to the presence of cosmic rays: gamma rays. Gamma rays are the most energetic form of light, far more powerful than ultraviolet light or even X-rays. When cosmic rays interact with interstellar gas and radiation within M82, they produce gamma rays, which can then escape their home galaxy and reach Earthbound detectors.
It took two years of dedicated data collection to tease out the faint signal coming from M82.

“We knew that the detection of M82 would have important scientific implications. As a result, we scheduled an exceptionally long exposure immediately after the experiment became fully operational” said Benbow. “The data needed to be meticulously analyzed to extract the gamma-ray signal, which is over a million times smaller than the background noise. Although the signal is only a tiny fraction of the data, we made many checks for possible bias and we are confident that the signal is genuine.”

“The detection of M82 indicates that the universe is full of natural particle accelerators, and as ground-based gamma-ray observatories continue to improve, further discoveries are inevitable.” said Martin Pohl, a professor of physics at Iowa State University who helped lead the study. A next-generation VHE gamma-ray observatory, the Advanced Gamma-ray Imaging System (AGIS), is already under development.

No comments
Start the ball rolling by posting a comment on this article!
Leave a reply
You must be logged in to post a comment.
© 2014 The International Space Fellowship, developed by Gabitasoft Interactive. All Rights Reserved.  Privacy Policy | Terms of Use