Headlines > News > New Evidence of Seasonal Change on Titan

New Evidence of Seasonal Change on Titan

Published by Matt on Wed Oct 7, 2009 8:46 am via: source
Share
More share options
Tools
Tags

Written by Nancy Atkinson

New images of Titan’s surface from the Cassini spacecraft show changes which are evidence of seasonal change. Objects identified earlier as liquid hydrocarbon lakes are shrinking and disappearing over the course of one to several Earth years.

Stereographic projection of Synthetic Aperture Radar (SAR) imagery of Titan’s south polar region obtained between Sep. 2005 and July 2009. The Cassini radar has observed 60% of this area and 9% has repeat coverage. Areas where changes have been detected are outlined in red. Credit: Alex Hayes and Jonathan Lunine

Stereographic projection of Synthetic Aperture Radar (SAR) imagery of Titan’s south polar region obtained between Sep. 2005 and July 2009. The Cassini radar has observed 60% of this area and 9% has repeat coverage. Areas where changes have been detected are outlined in red. Credit: Alex Hayes and Jonathan Lunine

Scientists say seasonal temperature variations causing evaporation is the most likely cause for the changes observed. Cassini’s Synthetic Aperture Radar (SAR) repeatedly peered through Titan’s thick atmosphere, and data show that the lakes exhibit more than an order of magnitude increase in radar return and have disappearing borders between observations, suggesting surface change. These changes cannot be explained without invoking temporal variability, scientists reported at the American Astronomical Society’s Division for Planetary Sciences meeting now under way in Fajardo, Puerto Rico.

Alex Hayes, of the California Institute of Technology, and Dr. Jonathan Lunine, of the University of Rome Tor Vergata shared images of several regions on Titan’s south pole. Ontario Lacus is the largest and best characterized lake on Titan. Between July 2004 and July 2009, the shorelines of Ontario Lacus have receded, consistent with liquid evaporation and/or infiltration. In June and July 2009, the Cassini radar acquired its first high-resolution SAR images of the lake. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study Ontario.

Areas where the Cassini radar has observed transient surface liquid in Titan’s south polar region. The top two images are located near (60S, 210W) and were obtained in December 2007 and May 2009. Empty lake features are outlined in red and filled lakes, observed in the 2007 image, are outlined in cyan. The lake features disappear between observations. The bottom row consists of images near (69S, 90W) obtained in Oct. 2007 and Dec. 2008. Empty lake features observed in Dec. 2008 are outlined in red. The empty lake features in the bottom-left section of the image are dark in Oct. 2007, consistent with liquid-filled lakes. In the Dec. 2008 image the brightness of these features are indistinguishable from the empty lakes in the upper-right section of the image (which are bright in both observations), suggesting surface change.

Areas where the Cassini radar has observed transient surface liquid in Titan’s south polar region. The top two images are located near (60S, 210W) and were obtained in December 2007 and May 2009. Empty lake features are outlined in red and filled lakes, observed in the 2007 image, are outlined in cyan. The lake features disappear between observations. The bottom row consists of images near (69S, 90W) obtained in Oct. 2007 and Dec. 2008. Empty lake features observed in Dec. 2008 are outlined in red. The empty lake features in the bottom-left section of the image are dark in Oct. 2007, consistent with liquid-filled lakes. In the Dec. 2008 image the brightness of these features are indistinguishable from the empty lakes in the upper-right section of the image (which are bright in both observations), suggesting surface change.

Evaporation is the most likely scenario for observed changes on Titan’s surface. Alternative explanations include freezing, cryovolcanism, and subsurface infiltration. Freezing is unlikely due to thermodynamic reasons during the summer season in Titan’s south pole, and there are no clearly observable cryovolcanic features in the study areas. However, liquids evaporating and becoming part of a static hydrologic system is inconsistent with the observations. But, the scientists said, infiltration into a dynamic hydrologic system with a regionally varying methane/ethane table is possible.

“If evaporation is responsible, model results suggest rates are about 1m/yr, similar to current GCM estimates of methane evaporation rates for the latitudes and season in question,” Hayes and Lunine wrote in their press release. “An analysis of the receding shorelines observed in Ontario Lacus also yield evaporation rates of about 1 m/yr and support the results of the two- layer model for the smaller lakes. These observations constrain volatile fluxes and hence, the evolution of Titan’s hydrologic system.”

No comments
Start the ball rolling by posting a comment on this article!
Leave a reply
You must be logged in to post a comment.
© 2014 The International Space Fellowship, developed by Gabitasoft Interactive. All Rights Reserved.  Privacy Policy | Terms of Use